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Abstract—A key step in manipulation is estimating the points
of contact and pose of an object with respect to the robot. In
this work we make the point that coordinating tactile sensing
with vision by collocated cameras (instead of only considering
the tactile sensor inputs alone) can 1) provide useful information
in advance of contact and 2) simplify the contact point and
pose estimation problem. We divide the problem of contact pose
estimation into two parts – the initial phase where the end effector
is not in contact with the object and the final phase when the
end effector is in contact. We leverage the natural scopes of the
camera and the tactile sensor to visually servo towards the object
and obtain a coarse pose estimate of the object with respect to
the end effector and refine that estimate to localize the contact
using the data obtained from the tactile sensor.

I. INTRODUCTION

In prior work on manipulation, we have found that head-
mounted or external cameras are often occluded by the robot or
other objects, and that objects move due to contact and during
graspings so these cameras alone often cannot accurately pre-
dict contact location. Cameras that do not move with the robot
hand do not get the benefit of a) direct measurement of object
locations and poses relative to the hand, b) direct measurement
of hand motion relative to the (potentially unknown or moving)
object, and c) direct measurement of the hand location relative
to the approach axis, which is useful for centering the hand
with respect to the object and guiding the hand to a particular
contact location. External cameras need to use stereo, multi-
view, or other forms of depth measurement to locate the
hand relative to the approach axis. Recent work on addressing
these issues have used hand mounted cameras to demonstrate
superior performance in classical manipulation tasks such as
grasping and bin picking (see e.g. Song et al. [1]). With the
availability of a visual perspective complementary to external
(or head mounted) cameras, researchers have diversified the
moving cameras to serve as tactile devices (see e.g. Yamaguchi
and Atkeson [2], Yuan et al. [3]) and have implemented deli-
cate manipulation behaviors (see e.g. Yamaguchi and Atkeson
[4], Yuan et al. [5]). Recent research has also implemented
tactile sensors for estimating contact pose and inferring objects
from contacts (see e.g. Wang et al. [6], Smith et al. [7]),
tracking object motion by fusing externally mounted cameras
and tactile sensors (see e.g. Izatt et al. [8]), on transfer
of information between external cameras and hand-mounted
cameras (see e.g. Li et al. [9]) and for surface crack detection
(see e.g. Palermo et al. [10]). A closely related work by

Luo et al. [11] discuss integration of a visual and tactile
measurements through a recursive Bayesian filter.
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Fig. 1: We demonstrate a pipeline to integrate two vision based
sensors with different fields of view to visually servo the robot
arm to a predetermined contact point and estimate the pose of a
fixed object relative to the sensors at contact. Figures 1a and 1b
show our sensor platform. We use 2 cameras – a LiDAR based
RGBD sensor (Intel RealSense L515) with a 70◦ field of view
to provide depth (fig. 1a left), and a USB camera (ELP camera
with a Sony IMX 291 sensor) with a wider 100◦ field of view
lens (fig. 1a right), which we collocate with a camera based
tactile sensor – GelSight in the middle (fig. 1b).In our modified
version of the GelSight, where we implement the working of
the original GelSight with 6 independently controlled lights as
described by Johnson et al. [12] in the physical sensor form
factor introduced by Yuan et al. [3]. The cameras are used to
visually servo the robot and record data (fig. 1c) and generate
a preliminary pose estimate (fig. 1d) while the robot is moving
towards the target. At contact, the GelSight data is observed
(fig. 1e) and the preliminary pose is then refined to generate
the object pose at contact. Figure 1f shows the camera pose
super-imposed on the mesh model of the object.
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Fig. 2: A summary of our main results. Figure 2a shows the results of correcting trajectory errors using the optical flows
observed by the two collocated cameras. On the two sides of the robot, we show 2 trajectories where the robot travels about
1 m (vertically) from the start to the final contact position, and each of the trajectories need a correction of 10 cm errors in
X (horizontally left to right) and Y (horizontally into the image) directions. We show the corrected portions of the trajectories
in green, un-corrected portions in red, and common portions in yellow. We could reliably correct up to 5 mm in horizontal
directions at the table surface. Figures 2b to 2d describe how collocated vision can help disambiguate localization when the
tactile signals are ambiguous. We set up the experiment to touch the portion of the box cutter with repeated features (the
middle of slider teeth in this case). Figure 2b shows a box cutter mesh registered to the image captured by the camera, fig. 2c
shows the GelSight image captured at contact and fig. 2d is the pose of the tactile sensor at contact rendered on the mesh
model of the object. As the camera is physically close to the tactile sensor, we could use the pose estimated in the camera
frame (fig. 2b) and refine it to predict the contact geometry recorded by the GelSight in fig. 2d, thus solving the contact pose
estimation problem. Localizing this contact, in the absence of the prior pose estimates based on a wider field of view, is a
harder problem. We can visually verify the success of the registration by comparing the raw GelSight data and the GelSight
view at contact in figs. 2c and 2d

In this work we make the point that coordinating tactile
sensing with vision by a set of collocated cameras1 of different
field of views, instead of only considering the tactile sensor
inputs alone can 1) provide useful information in advance of
contact and 2) simplify the contact point and pose estimation
problem. To do this, we divide the problem of contact pose
estimation into two parts – the initial phase before contact,
when the cameras can be used for vision-based servoing
to a contact point target as well as estimating a prior for
contact point and object pose estimation and the final phase
which refines the prior pose estimates through contact. In
this paper we assume that 1) the object is not moving, 2)
the object is a single rigid body with no articulations, and
3) we have a prior (potentially imperfect) 3D model of the
object (potentially provided by our vision of the current object)
so we can express the pose of the object with respect to
this model. For this paper we put aside the gross object
localization and recognition problem in order to focus on
fine localization, so we assume a vision system has already
located the object, created a bounding box, and recognized
the object by creating or selecting an appropriate 3D model
that we want to register the actual object to. Our experimental
pipeline involves selecting a workspace goal and then visually

1In this work we collocate vision and touch by simply putting the cameras
and the camera based tactile sensor in close physical proximity, while
operating them independently.

servoing to that goal, recording color and depth data from
the vision sensors, generating and maintaining pose estimates
of the object, and using the estimates along with the tactile
information received at contact to localize the contact point
with respect to the robot. Through this work we show that:

• The optic flow, as observed by the hand mounted cameras,
can be used to predict the heading direction of the robot.
These predictions, when averaged across the cameras
and portions of the robot trajectories ( ∼ 10)cm, can
provide reliable estimates of trajectory error, if any, in the
robot frame. Optic flow from shorter movements was not
reliable in predicting contact points due to small physical
rotations of the camera caused both by interpolating the
robot inverse kinematic solutions along the trajectory as
well as unmeasured motions of the hand relative to the
wrist joint angle sensors such as gear backlash and play.

• A couple of “mid-course” corrections in the trajectory
errors estimated through the optical flows measured by
the 2 cameras can correct almost all the error in trajecto-
ries while trying to move to a desired contact point (see
fig. 2a).

• Pose orientation errors, when measured only with the
cameras about a vertical axis are less than 1◦ in rotation,
and 1 cm in translation, at a distance of about 30 cm
from the camera.

• Given these priors, tactile estimation based on a GelSight



sensor further improved the pose estimates to an uncer-
tainty of ±1.5mm and ±0.25◦.

• Collocated vision is particularly useful when an object
does not have distinctive surface texture, or has repetitive
surface texture. We show that using tactile sensing col-
located with vision can help disambiguate tactile signals
when used for localization.
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